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SUMMARY

A tri-tree grid generation procedure is developed together with a �nite volume method on the unstruc-
tured grid for solving the Navier–Stokes equations. A hierarchic numbering system for the data structure
is used. The grid is adapted by adding and removing cell elements dependent on the vorticity magni-
tude. A special treatment is developed to ensure good quality triangular elements around the cylinder
boundary. The adopted �nite volume method is based on the cell-centred scheme. The pressure–velocity
coupling is treated using the SIMPLE algorithm. A modi�ed QUICK scheme for unstructured grids is
derived. The developed method is used to simulate the �ow past a single and multiple cylinders at low
Reynolds number. The obtained results are in good agreement with the published data. Copyright ?
2002 John Wiley & Sons, Ltd.

KEY WORDS: unstructured hierarchical grid; tri-trees; adaptive remeshing; �nite volume method;
SIMPLE; separated �ows and vortex shedding

1. INTRODUCTION

The �rst step in a numerical simulation of �uid �ow is the creation of a suitable grid. For
viscous and unsteady �ow problems involving complex boundaries, it is desirable to use a
grid generation algorithm that can automatically divide the �uid domain into elements. Wille
[1] described two-dimensional triangular and three-dimensional tetrahedral grid generation
using the tri-tree and the tetra-tree methods respectively. The hierarchical data structure of
tri-tree and tetra-tree reference numbers allows the algorithm to perform both up- and down-
searches in grid adaptation as required. Wille’s tri-tree reference numbers are contained in a
record consisting of nine integers in two-dimensional �ow. The present work uses a reference
numbering system developed by Samet [2; 3] originally for quad-tree grids, which enables
the reference numbers to be stored as single integers. A special treatment is developed in the
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present work to ensure good quality triangular elements around the cylinder boundary. Two
steps are taken: the node stretching and the obtuse angle elimination.
Finite volume formulations involve discretization of the �ow domain and then integration

of the equations over each element. The method has most commonly been used on quadri-
lateral grids (for example, Patankar [4] and Franke et al. [5]). However, triangular grids are
much more suitable for modelling curved and complex domain boundaries. There are only
a limited number of papers in the literature which describe the �nite volume method using
triangular grids, because the discretized mathematical formulations are more complicated than
for quadrilateral grids. For example, Pan and Cheng [6] considered the Euler equations on
unstructured grids. Thomadakis and Leschziner [7] used a semi-staggered control volume for
the momentum and pressure correction equations. More recently Chan and Anastasion [8]
presented a cell-centre upwind scheme and solution based on the pseudo-compressibility tech-
nique. The present work is based on the cell-centred scheme with SIMPLE for the pressure
velocity coupling. This is similar to the work by Davidson [9]. The major di�erence is that
the formulation is used with the hierarchic and adaptive tri-tree grids developed in this paper.
A modi�ed QUICK scheme for non-uniform grids is also introduced. The test cases for a
single and multiple circular cylinders at low Reynolds number show that the scheme is stable
and the result is accurate.

2. THE TRI-TREE ALGORITHM

In tri-tree grids, the mesh generation starts from an equilateral triangle which encloses the
�uid domain. A diagram of the tri-tree structure is shown in Figure 1. An initial equilateral
triangle is divided into four new equilateral triangles. Each of these triangles is then divided
into another four equilateral triangles, and so on.
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Figure 1. Tri-tree structure showing subsequent divisions.
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Figure 2. The reference numbers.

2.1. The numbering system

Each element has a reference number that indicates the position of the element within the
tri-tree hierarchical data structure. The reference number is de�ned when the corresponding
element is generated. It contains important information about the element. For example, the
generation level, NL, and the reference numbers of parent and children elements of the present
element, may be calculated directly from its reference number. The reference number can also
be used to calculate its neighbour elements and to perform tree searches.
The reference numbering system for this study is adopted from Samet [2; 3], who stored

the reference numbers e�ciently as an integer. It can be summarized as

N=
m−1∑
i=0

NiKi (1)

where m is the division level of the grid and Ni takes the integer value 1, 2, 3, or 4 depending
on the position in which the element is located within its parent triangle. The tri-tree grid
reference numbers are stored as the sum of successive powers of K . In this case, K=5 is
used for tri-tree decimal grids in two dimensions. Within each divided element, the triangles
are numbered anti-clockwise �nishing with the central triangle (e.g. 21 in Figure 2).
The number of divisions required starting from the root element is the generation level

of the element. Following from Equation (1) with K=5, the generation level is obtained by
successively dividing the reference number by 5 until the remaining number is less than 1.
For example, in Figure 3 the reference number of the element marked ∗ is 121. Successive
divisions by 5 yield: �rst division=24:2; second division=4:84 and third division=0:968
which is less than 1 and so the operation is halted. Thus three divisions were carried
out to produce a number less than one, which indicates that the generation level,
NL=3.
To obtain the reference number of the parent element of a given triangle is a

two-stage process. Firstly, the integer remainder of the division of the given element
reference number by 5NL−1 is obtained. This is then multiplied by 5NL−1. The procedure is
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*

Figure 3. Example of tri-tree grid.

summarized by,

Np=mod
(

N
5NL−1

)
×5NL−1 (2)

where Np is the reference number of the parent of a given element, mod is the integer
remainder operator, and N is the given element reference number. For example, in
Figure 3, the reference number of the element marked ∗ is 121; the generation level
is 3, [N=(5NL−1)]=[121=25]=4:84 and integer remainder equal to 0.84. The reference number
of the parent element is then 0:84× 52=21, corresponding to Figure 2.

2.2. Methodology

The tri-tree grid generation process consists of the following steps:

(i) De�ne an initial equilateral triangle, within which the desired �uid domain will lie.
(ii) De�ne a set of seeding points about which the grid will be generated.

For example, Figure 4 shows an example of a circular cylinder in a unit square
domain, although the scheme can be applied to other shapes. The grid generation
starts from an equilateral triangle, which encloses the �uid domain, based on that a
set of seeding points is properly distributed over its boundary.

(iii) If the triangle contains a seeding point, divide the triangle otherwise move to next
one.

(iv) Repeat until the maximum division level has been reached.
Examples are given in Figures 5 and 6, which show the grid after one and nine
successive divisions respectively.

(v) Subdivide all grid elements to minimum level.
Figure 7 shows the grid after division of all triangles to a minimum of level �ve. This
process also involves removing from the grid any triangles that lie wholly outside
the external �ow boundary.

(vi) Apply face regulation (see Figure 8).
This involves performing further divisions to restrict the ratio of triangle sides sharing
a common edge to 2:1 within the domain.
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Figure 4. Seeding points.

Figure 5. First division.

(vii) Eliminate hanging nodes.
Hanging nodes are vertices that lie at the centre of the face of an adjacent and
larger element. They complicate the discretization equation because it is di�cult to
conserve �ux numerically across hanging nodes. Connecting them to the third vertex
of the adjacent larger triangle eliminates the hanging nodes as shown in Figure 9.
This process creates two right-angled triangles from one equilateral triangle and the
resulting grid then contains both equilateral and right-angled triangles.

(viii) Apply special boundary treatment around interior boundaries (see Section 2.3).
(ix) Apply corner regulation (see Figure 10).

This process smooths the transition between triangles of di�erent size and involves
performing further division of triangles that are connected at a vertex to a triangle
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Figure 6. Ninth division.

Figure 7. Application of minimum level 5.

of more than one division level di�erence. Thus, the side length ratio of triangles
connected by a vertex is limited to a maximum of 2:1.

(x) Reorder cell and node numbers and store grid information.
After above procedures, the completed tri-tree grid is shown in Figure 11, which has
a maximum division level of 9 and minimum division level of 5. In this grid, the
size of the faces of the �nest tri-tree elements is 1=28 (maximum division level=9)
times the length of the face of the initial triangle. The general formula for this
length is

d=
D
2n

(3)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:403–440



TRI-TREE GRID GENERATION 409

Figure 8. Grid after face regulation.

Figure 9. Elimination of hanging nodes.

Figure 10. Grid after boundary treatment and corner regulation.
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Figure 11. Entire grid, level 9.

Figure 12. The vicinity of the cylinder.

where d is the size of the face of the �nest element, D is the length of the face of
the initial triangle and n is the level of the maximum division.

2.3. Boundary treatment

After the process of eliminating hanging nodes described at stage 7 in the last Section, the
resulting elements in the vicinity of the cylinder are given in Figure 12, which shows that
some of the nodes are inside the cylinder. A special treatment around the cylinder boundary
is used to obtain a smooth approximation. Two steps are taken, as follows:

2.3.1. The stretching technique. First, the boundary nodes that lie close to the cylinder are
selected and lines are extended from each of these nodes to the centre of the circular cylinder.
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Figure 13. The stretching technique.
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Figure 14. The cell i1 is deleted.

The intersection between the line and the cylinder circumference will be the new node position
as shown in Figure 13.
The key to the stretching technique is in making a decision on the critical distance normal

to the actual cylinder wall. In other words, which elements close to the cylinder wall should
be deleted or retained. Figure 14 shows a point s1 lying on the cylinder circumference and
located inside element i1, which has two nodes inside the cylinder (a2 and a3) and the other
a1 in the opposite direction at distance a1s1 from the wall. An optimum ratio r is used to
decide whether element i1 is deleted or retained, which is de�ned as

r=
d1
h

(4)

where d1 and h are the distances from s1 and a1 to the face a2a3 respectively.
If the ratio value r is larger than an optimum value, ro, element i1 is deleted as shown in

Figure 15; a1 is then stretched to s1 so element i2 is distorted. If r is less than ro, the element
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Figure 15. The cell i2 is distorted.
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Figure 16. The cell i1 is retained and i1; i3, and i4 are distorted.
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Figure 17. Notation associated with the optimum ratio.

i1 is retained as shown in Figure 16; a2 and a3 are stretched to s2 and s3 so that elements
i1; i3 and i4 are distorted.
To determine ro, we consider Figure 17 which shows triangle i1 before and after distortion.

Since i1 is equilateral prior to distortion, we have

a=h=1=
√
3 (5)
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Figure 18. Elimination of obtuse angle.

In order to avoid obtuse angles that impair the quality of the solution, angle � should not
exceed 90◦. This implies that

a
h− d1

¡ tan 45◦ ⇒ a¡h− d1 (6)

Introducing Equation (6) into Equation (5) yields,

h√
3
¿h− d1⇒d1¡0:423h (7)

Hence, ro=0:423 will be the deciding value: if d1=h¿0:423 the triangle is deleted, otherwise,
it is retained and subsequently stretched.

2.3.2. Elimination of obtuse angles. The stretching technique ensures that no obtuse angles
appear within the stretched triangle. However, this technique does not guarantee that obtuse
angles will not arise in its neighbouring elements. This is especially true when two nodes on
opposite sides of the cylinder boundary are stretched to their new positions. In this scenario,
the combination of successive element distortions may create an obtuse angle within the
neighbouring element. Obtuse angles within the grid may cause the accuracy of the numerical
simulation to su�er, and so it is necessary to transform these angles into acute or right angles.
The correction procedure is implemented by �rstly identifying these large angle cells such

as abp′ in Figure 18, where nodes b and p′ lie on the cylinder surface. Lines are then de�ned
from nodes that are outside the cylinder (e.g. node a) to the centre of the cylinder. The
intersection between the line and the cylinder circumference will be the new node p. This
creates two well-formed triangles abp and apc in this instance. Figure 19 shows the �nal
result after the boundary treatment is applied to the cylinder boundary.
This boundary treatment has been developed for the circular cylinder considered here, but

the technique may be adapted to an arbitrary boundary, when the line linking a grid node to
the centre of the cylinder is replaced by a line normal to the surface.
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Figure 19. Elimination of obtuse angles.

2.4. Grid information storage and retrieval

When a triangular element is divided to produce four new elements, the parent number is
deleted when the children are generated. During each generation procedure, the number of
newly generated elements is added to the record of existing elements.
Two nodal numbering systems have to be used for each triangle: local and global nodal

numbering. The local node numbers of a cell range from 1 to 3 in the anti-clockwise direction.
The global node number is increased when a new node is generated in the re�nement process.
The co-ordinates of the nodes, the local and global node numbering, the boundary indicator
information and cell reference numbers are all stored. Other information stored includes the
starting and ending points for each face and the neighbours of each element. The tree structure
so de�ned is su�cient to completely specify the element generation history for the purpose
of adaptation.

3. TRI-TREE GRID ADAPTATION

The tri-tree described above has a naturally hierarchical data structure. It contains all �ow and
connectivity information su�cient to adapt the grid by a local grid re�nement or dere�nement
process. The grid adaptation strategy assumes that there exists a good quality initial grid of the
computational domain, which is taken to be the invariant base grid. The re�nement process
involves adding nodes to this base grid by face and element subdivision. Each change in the
computational grid is tracked and recorded within the hierarchical data structure. The dere-
�nement process is the inverse of re�nement, where nodes, faces and elements are removed
from the grid.
The process of grid adaptation is invoked automatically in response to �ow solution criteria.

It is desirable that re�ned regions correspond to regions of signi�cant �ow activity requiring
increased resolution. Conversely, dere�nement is applied in regions of insigni�cant �ow ac-
tivity where reduced resolution is desired for the sake of CPU e�ciency. These criteria have
important consequences for the overall operation of the adaptive solver.
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Here the adaptation of the grid is based on a vorticity parameter. Before the grid may be
adapted, it is necessary to calculate the vorticity value of each element de�ned as,

!=
∣∣∣∣
(
du
dy

)
−
(
dv
dx

)∣∣∣∣
where u and v are velocity components in x and y directions respectively. The maximum
vorticity !max and the minimum vorticity !min values are speci�ed before the simulation
starts and the grid is adapted regularly throughout the simulation at a prescribed number of
time steps. If the vorticity of a given cell is greater than the prescribed maximum, !max,
then that cell must be divided. There are two types of subdivision as there are two types of
triangle. One is subdivision of equilateral triangles, which is regular division similar to the
base grid subdivision. The other is the subdivision of right angle triangles, which is performed
by �rstly replacing the two right angle triangles with their equilateral parent element, and then
subdividing the parent element into four equilateral triangles. If the vorticity of a given cell
and all its siblings is less than the prescribed minimum, !min, and the cell is not a member
of the base mesh, then its parent element is placed on the list of elements and the children
are deleted.
It should be noted that the re�nement and dere�nement process does not change the value

of the vorticity at a given point. It is therefore necessary to de�ne a maximum and a minimum
division level. When the re�nement and dere�nement process have gone beyond these levels,
they will stop and the calculation will continue. This procedure is found to give satisfactory
results at low Reynolds number provided in this paper.
Once the remeshing process is complete, face regulation, elimination of hanging nodes and

corner regulations are performed. The grid is then reordered, nodes are numbered and the
pointer system updated. All these procedures are the same as those described previously for
the base grid generation.

4. THE FINITE VOLUME METHOD

4.1. Transport equation

Let � represent a general variable, such as velocity. The general transport equation for � can
be written as

@(��)
@t

+∇ · (�U�)=∇ · (��∇�) + �s� (8)

where �s� denotes a source, U=(u; v) is the velocity vector, � is the density of the �uid and
�� is the dynamic viscosity of the �uid. For the steady case, the �rst term is zero. If a �ux
vector J containing convection and di�usion is de�ned as

J=�U�− ��∇� (9)

then in steady state vector notation the transport equation reads

∇ · J= �s�
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Figure 20. A triangular element i with its three neighbours i1; i2; i3.

Integrating this equation over a control volume (Vi bounded by surface A) and using the
Gauss law of divergence give

∫
A
J · dA=

∫
Vi
�s� dV (10)

which, in the discretized form becomes

nf∑
fj=1
(J ·A)fj=S� (11)

where nf is the total number of faces of a cell and is three for a triangular grid used in this
paper and S� is the total source in the control volume. The left-hand side of Equation (10)
has two parts: the net convective �ux and the net di�usive �ux, which will be discussed
separately.
The convective �ux contains the mass �ux m� =�A�U fj multiplied by the scalar property

�. The face areas Afj of element i are shown in Figure 20. The face normal velocities U fj

are calculated by:

U fj = ufj · nxfj + vfj · nyfj (12)

where nfj=(nxfj ; nyfj) is the unit outward-pointing normal vector of the face, as shown in
Figure 21.
The face velocities ufj and vfj may be calculated from their value at the cell centres

where variables are de�ned. A three-point upstream-weighted quadratic interpolation (QUICK)
scheme is used based on the notations in Figure 22. We have

�f1=Efj�i1 +Gfj�i − Ifj�s1 (13)
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Figure 21. Notation associated with face fj.
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Figure 22. Notation associated with a face value when using the QUICK scheme.

where

Efj=
[

h2h3
(h1 + h2)(h1 + h3)

]
; Gfj=

[
h1h3

(h1 + h2)(h3 − h2)

]
; Ifj=

[
h1h2

(h1 + h3)(h3 − h2)

]
(14)

�s1 in Equation (13) is found through �j3; jst and �f3; �j3; jst can be obtained through the values
at the centres of the surrounding elements.
The second part of the �ux vector J in Equation (9) represents di�usion. Across a given

face fj, this becomes

−{��A · ∇�}fj=−
{
�� Afj

(
nx

@�
@x
+ ny

@�
@y

)
fj

}
(15)

We must now evaluate the derivatives at the faces. This is achieved by applying Green’s
formula to the control volume enclosed by the surface a−b−c−d (see Figure 23) surrounding
the midpoint of the face, i.e.(

@�
@x

)
fj
=
1
Vfj

∫
�nx d A

(
@�
@y

)
fj
=
1
Vfj

∫
�ny d A (16)

where the integration is over the surface a − b − c − d and Vfj is the enclosed volume. If
bc and da are chosen to be parallel to the face, and ab and cd parallel to the line linking i
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Figure 23. Notation associated with Equation (16).

and ij, we have

−{��A · ∇�}fj=−��Afj
Vfj

[Afj(�ij − �i) + Ajend(nxfjnxjend + nyfjnyjend)(�jend − �jst)] (17)

where (nxjend ; nyjend and Ajend are normal vector and area of cd respectively. The �rst term
on the right-hand side will be treated implicitly and the second term, which is due to the
non-orthogonality between ab and bc, will be treated explicitly using values at the previous
iteration.
Combining the expressions for convection and di�usion for a triangular cell gives

3∑
j=1
[mfj�fj − (��A∇�)fj]=S (18)

where

S =S� +
��Afj
Vfj

Ajend(nxfjnxjend + nyfjnyjend)(�jend − �jst)

The resulting discretized equation is

ap�i = af1�il + af2�i2 + af3�i3 + S +
3∑

j=1
Ifjmfj�sfj (19)

where

af1 =−Ef1mf1 + Kf1

af2 =−Ef2mf2 + Kf2

af3 =−Ef3mf3 + Kf3
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ap = (Gf1mf1 + Kf1) + (Gf2mf2 + Kf2) + (Gf3mf3 + Kf3)

Kfj = ��
A2fj
Vfj

and Efj ; Gfj ; Ifj are coe�cients de�ned in Equation (14).

4.2. The pressure correction equation

Once � in Equation (9) is taken as u or v, and �s� in Equation (10) is taken as [(@p)=(@x)]
or [(@p)=(@y)], where p is the pressure, the result becomes the momentum equation for �uid
�ow. For a given pressure distribution, p∗, the above procedure gives a velocity �eld (u∗; v∗).
In general, this velocity �eld does not satisfy the following continuity equation,

@
@x
(�u) +

@
@y
(�v)=0

which by integrating over an element, can be written in the discrete form

3∑
j=1

mfj=
3∑

j=1
�U fjAfj=0 (20)

In order to satisfy Equation (20), a pressure correction has to be introduced based on the
SIMPLE algorithm. The new velocity �eld after pressure correction can be written as

ui=u∗i −
Vi

ap

(
@p′

@x

)
i
and vi=v∗i −

Vi

ap

(
@p′

@y

)
i

We notice that above equation is de�ned at the centre of each cell. Interpolation is needed
when it is substituted into Equation (20). We have

aip′
i=apf1p′

i1 + apf2p′
i2 + apf3p′

i3 + Sp (21)

where

apf1 = �A2f1Wf1
1
Vf1

apf2 = �A2f2Wf2
1
Vf2

apf3 = �A2f3Wf3
1
Vf3

ai = apf1 + apf2 + apf3

Wfj = �j
Vi

ap
+ (1− �j)

Vij

(ap)ij

Sp =−
nf∑
fj=1

m∗
fj +

nf∑
j=1

�AfjWfj
1
Vfj

Ajend(nxfjnxiend + nyfjnyjend)(p′
jend − p′

jst)
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Here �j is a weight function to interpolate the values at the cell centres to the intersection
point of the two centres and the joint face of the two elements. After Equation (21) is solved,
the pressure, velocities and mass �ux are corrected as

p=p∗ + �pp′ (22)

ui = u∗i −
Vi

ap

(
@p′

@x

)
i
and vi=v∗i −

Vi

ap

(
@p′

@y

)
i

(23)

mfj =m∗
fj − �AfjWfj

(
@p′

@n

)
fj

(24)

where �p is pressure under-relaxation factor.
Collocated grid systems based on the SIMPLE algorithm described above often su�er from

numerical oscillation in the pressure �eld. In order to prevent such oscillation, the following
term (

@p
@n

)
fj
−
[
�j

(
@p
@n

)
i
+ (1− �j)

(
@p
@n

)
ij

]
(25)

is added to the convection (normal) velocities, as used by Davidson [9]. As a result, Sp in
Equation (21) is modi�ed with

m∗
fj=(�AfjU

fj∗)− �AfjWfj

{(
@p
@n

)
fj
−
[
�j

(
@p
@n

)
i
+ (1− �j)

(
@p
@n

)
ij

]}
(26)

The above solution algorithm can be summarized as follows:

(a) initial pressure and velocity �elds are de�ned;
(b) the coe�cients ap and afj in Equation (19) are calculated and the equation is solved

using a point by point Gauss–Seidel solver;
(c) the coe�cients for p′ in Equation (21) are computed and the pressure-correction

Equation is solved using a point by point Gauss–Seidel solver;
(d) the pressure, velocities and mass �ux are corrected using Equations (22), (23) and

(24) respectively;
(e) steps (a)–(d) are repeated until convergence is achieved, based on the assumption that

the mass residuals in all cells or the sum of normalized residuals have fallen below a
prescribed value.

For the unsteady �ow, the �rst term of Equation (8) represents the rate of change term
and is not equal to zero. The fully implicit scheme used here is based on that described by
Versteeg and Malalasekera [10]. The discretized equations are the same as Equation (19) for
the steady problems apart from a minor change to the central coe�cient ap:

ap�i=af1�i1 + af2�i2 + af3�i3 + S +
3∑

j=1
Ifjmfj�sfj + a0p�

0
i
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Figure 24. Boundary conditions.

where

ap=(Gf1mf1 + Kf1) + (Gf2mf2 + Kf2) + (Gf3mf3 + Kf3) + a0p (27)

and

a0p=�Vi=�t

Here �t is the time step and �0i indicates the variable at the previous time step. The rest of
the coe�cients are the same as those of Equation (19).

5. RESULTS

Results are presented here for simulations of low Reynolds number �uid �ow past a single
and multiple cylinders using the �nite volume method with the adaptive tri-tree grids.

5.1. Initial values and boundary conditions

The inlet velocity U0 is constant and the Reynolds number is de�ned by Re=U0×dc=�. Here,
� is the kinematic viscosity of the �uid and dc is the diameter of the cylinder. Initial values
of the velocities, u; v, and the pressure, p, are set to zero everywhere apart from on the outer
boundary, where the �ow has an impulsive start.
No-slip conditions are imposed on the cylinder surface. The Dirichlet boundary condition is

set for velocity at the inlet and pressure at the outlet. Elsewhere, the Neumann boundary con-
dition is imposed, as illustrated in Figure 24. The calculation is considered to have converged
when the sum of normalized residuals falls below 1:0× 10−4.
The computational con�guration for �ow past a circular cylinder which is used for the

cases at Re=2:04; Re=10 and 40 considered below is shown in Figure 25. The centre of the
cylinder is located a distance equal to 5dc downstream from the inlet and 15dc upstream from
the outlet. The upper and lower lateral open boundaries of the domain are each 10dc away
from the centre of the cylinder. Some geometrical parameters of the closed wake de�ned in
Figure 26 will be calculated.
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Figure 25. Computational con�guration.
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L 

Figure 26. Geometrical parameters of the closed wake.

5.2. Grid convergence test at Re=2:04

The lower limit for separation of the boundary layer is reported as Re=3:2 by Nisi and Porter
[11], Re=6:0 by Homann [12] and Re=7 by Dennis and Chang [13] for �ow past a circular
cylinder. For grid convergence tests, it is sensible to choose a case where the boundary layer
remains attached or the vorticity in an element is less than the prescribed maximum and so
does not require grid adaptation. Therefore, studies of the grid convergence on non-adaptive
grids have been carried out for the case of Re=2:04, which was investigated experimentally
by Tritton [14].
The number of elements, nodes and the drag coe�cient CD (de�ned as 1 for the case of

maximum level 10 and minimum level 6) are listed in Table I. It is clear that the solution
is grid convergent and the grid used in case 3 is �ne enough for this case. Figures 27 and 28
show the detail at the cylinder and the entire domain for the grid used in case 3. The converged
solution shows good agreement with the experimental data published by Tritton [14].
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Table I. Data for grid convergence test at Re=2:04.

Case Subdivision level Cells Nodes Drag coe�cient, CD

Max Min Present study Tritton [14]

1 10 6 1824 987 7.77
2 11 6 2518 1363 7.33
3 12 6 3957 2142 7.26 7.26
4 12 7 7061 3741 7.27
5 13 6 8890 4726 7.25

Figure 27. Grid detail near the cylinder.

5.3. Simulation at Re=10

Steady �ow simulation at Reynolds number, Re=10, past a circular cylinder with adaptive
grids is presented here. In this case, �ow separation behind the cylinder forms two symmetric
vortices.
The base grid is shown in Figure 28, and contains 3957 grids and 2142 nodes. The adapted

maximum division level of 11 and the adapted minimum level of 6 are speci�ed before the
adaptation together with !max=3:0 s−1 and !min=0:1 s−1. After solver is run using the base
grid, the adaptive routine and the solver are alternately and iteratively run until no more new
elements are generated. The total number of iterations is 5 and the �nal adapted grid contains
4125 grids and 2226 nodes shown in Figure 29.
Figure 30 illustrates the velocity vectors in the vicinity of the cylinder. Figure 31 shows

pressure contours at �p=2:73× 10−1 Pa. These �ow patterns are found to be in good agree-
ment with those provided by Greaves [15] and Saalehi [16]. The drag coe�cient is found to
be CD=2:99, which is in reasonable agreement with that obtained numerically by Collins and
Dennis [17], CD=2:94.
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Figure 28. Entire grid.

Figure 29. Detailed adapted grid near the cylinder at Re=10.

5.4. Simulation at Re=40

Although the �ow past a circular cylinder for Re=40 is steady, simulations were carried
out using the unsteady formulation to validate the time-dependent �nite volume method. The
simulation used a non-dimensional time step �t∗=1:0, where t∗=U0× t=dc, and steady state
is presumed to occur after the sum of normalized residuals falls below 1:0× 10−4 for each
successive time step. The simulation took 14 adaptations and stopped at non-dimensional time
t∗=14 at which point no more new elements or nodes were generated. The base grid is shown
in Figure 28 and the fully adapted grid in Figure 32. Figure 33 illustrates the velocity vectors
in vicinity of the cylinder and Figure 34 shows pressure contours at �p=3:832 Pa.
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Figure 30. Velocity vectors at Re=10.

Figure 31. Pressure contours at Re=10.

Figure 35 depicts the time history of the drag coe�cient CD and shows the time convergence
of the method. The evolution in time of the: close-wake length parameter, L=dc, is shown in
Figure 36; position of the vortex centres (a=dc and b=dc) are presented in Figures 37 and 38;
separation angle, �s, is shown in Figure 39. The time variation of each of these parameters
shows good agreement between the present results and those of the experimental data given
by Coutanceau and Bouard [18].
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Figure 32. Detail of adapted grid at Re=40.

Figure 33. Velocity vectors at Re=40.

5.5. Simulation at Re=200

The �ow past a cylinder at Re=200 has an unsteady wake formed by shed vortices.
Figure 40 show the streamlines in sequence for one complete cycle of K�am�an vortex shedding
with � =0:32m2 s−1, where  is the stream function. These patterns are in good agreement
with numerical simulations provided by Chen et al. [19].
Table II shows a comparison between the present results (CD;CL) and the Strouhal number,

S=f×dc=U0 where f is the vortex shedding frequency) and those obtained by experiment
and other numerical simulations. The present numerical data are in reasonable agreement with
the other published results.
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Figure 34. Pressure contours at Re=40.
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Figure 35. Time history of the drag coe�cient.

Figure 36. Evolution with time of L=dc.

5.6. Flow past multiple circular cylinders at Re=40

Arrays of cylinders, which may be subject to �ow interaction, occur in various industrial
applications, such as pipe bundles, closely spaced tubular members of o�shore jacket structures
and heat exchanger tubes. In this section, interactions due to �uid �ow past �xed multiple
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Figure 37. Evolution with time of a=dc.
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Figure 38. Evolution with time of b=dc.
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Figure 39. Evolution with time of the cylinder separation angle, �s.

circular cylinders at Re=40 are predicted. The �ow interaction between two or three cylinders
depends on the non-dimensional distance between the centres of the cylinders, denoted by T=dc

in the cross-�ow direction and P=dc in the �ow direction as shown in Figures 41, 42 and 43.
The transverse arrangement will be considered �rst. The �ow interaction between two

cylinders depends on their spacing and has been calculated here for arrangements at T=dc=2:0
and T=dc=5:0. The diameter of the cylinder, dc, is taken as 0:05 m (1=25 of the domain
length). The �nal adapted grids for two circular cylinders placed in transverse arrangement at
T=dc=2:0 and T=dc=5:0 are shown in Figures 44 and 45. Figures 46 and 47 illustrate the
velocity vectors in the vicinity of the cylinders. Figures 48 and 49 show pressure contours at
�p=5:13 Pa and �p=4:63 Pa respectively.
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Figure 40. Streamline pattern sequence over one cycle of K�am�an vortex shedding.

Table II. Drag, lift and Strouhal number at Re=200.

CD CL S

Max. Min. Max. Min.

Present study 1.50 1.32 0.71 −0:59 0.200
Wille [20] (experimental)
Roshko [21] (experimental) 1.3 0.19
Lecointe and Piquet [22] 1.50 1.42 0.70 −0:70 0.227
Chen et al. [19] 1.37 1.29 0.72 −0:72 0.197
Chan and Anastasion [8] 1.53 1.43 0.63 −0:63 0.183
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Figure 41. Computational con�guration in transverse arrangement.
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Figure 42. Computational con�guration in tandem arrangement.
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Figure 43. Computational con�guration for three cylinders.

The cylinder spacing a�ects the �ow patterns around the two cylinders. The �ow patterns
can be distinguished by examining the closed wake length L, the position of the vortex centres
(a; b) and the separation angles, �s: These parameters are all listed in Table III. The drag and
lift data are recorded in Table VI. The drag coe�cients for both cylinders in both transverse
arrangements are greater than that for the single cylinder.
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Figure 44. Adapted grid at T=dc=2:0.

Figure 45. Adapted grid at T=dc=5:0.

Flow past two cylinders in tandem arrangement P=dc=2:0 and P=dc=5:0 is considered
next. The �nal adapted grids for P=dc=2:0 and P=dc=5:0 are shown in Figures 50 and 51.
Figures 52 and 53 illustrate the velocity vectors close to the cylinders. Figures 54 and 55
show pressure contours at �p=3:42 Pa and �p=3:83 Pa respectively.
Table IV summarizes the geometrical parameters of the closed wake for the two tandem

arrangements considered and for the single cylinder. The drag and lift data are recorded in
Table VI. These data show that the result of �ow interference between two cylinders in
tandem is that the drag coe�cient for the upstream cylinder is slightly lower than for a single
cylinder and for the downstream cylinder is much lower than for a single cylinder. The drag
coe�cient for the downstream cylinder for P=dc=5:0 has a higher value than for P=dc=2:0.
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Figure 46. Velocity vectors at T=dc=2:0.

Figure 47. Velocity vectors at T=dc=5:0.

Figure 48. Pressure contours at T=dc=2:0.
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Figure 49. Pressure contours at T=dc=5:0.

Table III. Geometrical parameters of the closed wake: (a) de�nition; (b) predicted values.

y

L

x

θs1 b1/2dc

Separation point
Vortex centre

Wake stagnation point

a1

θs2 a2 b2/2

Vortex centre
Separation point

Main flow

(a)

Re=40 L=dc �s1 �s2 a1=dc b1=dc a2=dc b2=dc

A single cylinder 2.26 53:56◦ — 0.75 0.58 — —
T=dc=2:0 2.0 55:88◦ −43:24◦ 0.6 0.5 0.70 0.24
T=dc=5:0 2.20 52:43◦ −48:92◦ 0.78 0.62 0.60 0.55

(b)

As may be expected, less interaction occurs for the P=dc=5:0 spacing and so the value of
drag coe�cient for the upstream cylinder in this case is more similar to the single cylinder
than for the P=dc=2:0 case. However, with both cases, the force on the downstream cylinder
is dramatically reduced by its presence in the wake of the upstream cylinder.
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Figure 50. Adapted grid at P=dc=2:0.

Figure 51. Adapted grid at P=dc=5:0.

Figure 52. Velocity vectors at P=dc=2:0.
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Figure 53. Velocity vectors at P=dc=5:0.

Figure 54. Pressure contours at P=dc=2:0.

5.7. Flow past three cylinders

The grid for three circular cylinders placed in arrangement at T=dc=2:0 and P=dc=2:5, in
which the third cylinder is shielded from the incoming �ow behind the pair of transverse
cylinders, is shown in Figure 56. Figure 57 illustrates the velocity vectors close to the cylinder,
Figure 58 shows pressure contours at �p=5:01 Pa. These �ow patterns have been found in
good agreement with numerical simulations by Greaves and Borthwick [23].
The closed wake length L, the position of the vortex centres (a; b) and the separation angles,

�s are listed in Table V. The drag and lift coe�cients are given in Table VI.
For this case, it can be seen that the �ow interaction around the upstream cylinders behaves

similarly to the transverse cylinders at T=dc=2:0. The force on each cylinder is larger than for
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Figure 55. Pressure contours at P=dc=5:0.

Table IV. Geometrical parameters of the closed wake: (a) de�nition; (b) predicted values.

(a)

x

Vortex centre

θs2
a2 b2/2

Vortex centre

Separation point

Wake stagnation point

dc

L2Wake stagnation point
L1

y

θs1 b1/2

dc

Separation point

a1

Main flow

Re=40 L1=dc L2=dc �s1 �s2 a1=dc b1=dc a2=dc b2=dc

A single cylinder 2.26 — 53:56◦ — 0.75 0.58 — —
P=dc=2:0 — 1.74 54:32◦ 40:36◦ 0.5 0.65 0.7 0.48
P=dc=5:0 2.9 2.9 54:32◦ 40:74◦ 1.4 0.56 0.6 0.2

(b)

the single cylinder. However, the presence of the third cylinder reduces the force compared
to that calculated for two cylinders alone. The table shows there is discrepancy between
the results calculated here and those given by Greaves and Borthwick [23]. This is probably
because the triangular elements used here provide a better approximation to a curved boundary
than the square elements adopted by Greaves and Borthwick.
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Figure 56. Detail of adapted grid.

Figure 57. Velocity vectors.

6. CONCLUSION

The paper has presented the study of the adaptive tri-tree grid generation and the application
of the �nite volume method on the unstructured grid. The work has demonstrated that the
tri-tree unstructured grid is more �exible and gives a smoother approximation to a curved
boundary. It shows that the algorithm has potential to be used for complex geometry. The
local re�nement is particularly useful for accurate simulation of vortical structures in the
�ow. Investigation into the �ow past single and multiple cylinders has demonstrated that the
numerical results are in reasonable agreement with published data. Although the calculated
examples are at low Reynolds number, the developed method can in principle be applied to
�ow at high Reynolds number as well.
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Figure 58. Pressure contours.

Table V. Geometrical parameters of the closed wake: (a) de�nition; (b) predicted values.

(a)

y

L2

θs3 b3/2

dc

Separation point

a3
Main flow

L1

x

θs1 b1/2
dc

Separation point
Vortex centre

Wake stagnation point

a1

θs2 a2 b2/2

Vortex centre
Separation point

Vortex centre

Wake stagnation point

Re=40 L1=dc L2=dc �s1 �s2 �s3 a1=dc a2=dc a3=dc

bp=dc b2=dc b3=dc

T=dc=2:0 0.34 0.62 3.8
P=dc=2:5 1.1 8.6 60:25◦ −43:03◦ 72:08◦ 0.868 0.18 0.936

(b)

The studies suggest that the algorithm is a contender for many engineering applications.
Although the selected cylinder con�gurations are special, they provide good examples of the
strength of the present scheme. This analysis has laid the foundation for further investigation
of more complex �ow con�gurations and may also be extended to general three-dimensional
simulations.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:403–440



TRI-TREE GRID GENERATION 439

Table VI. The drag and lift coe�cients for Re=40 �ow past a single cylinder and multi-cylinders
comparison with numerical data reported by aDennis and Chang [13] and bGreaves and Borthwick [23].

Re=40 Drag coe�cient, CD Lift coe�cient, CL

Present study Published data Present study Published data

1 2 3 1 2 3 1 2 3 1 2 3

A single cylinder —
1.69 1:62a 3.84

E-03

Two cylinders — —
T=dc=2:0 2.18 2.18 1:77b 1:77b 0.63 0.68 0:37b 0:39b

Two cylinders —
T=dc=5:0 1.87 1.87 0.12 0.13

Two cylinders — —
P=dc=2:0 1.63 0.15 6.50 4.37

E-03 E-03

Two cylinders —
P=dc=5:0 1.66 0.44 9.72 9.68

E-03 E-02

Three cylinders — — —
T=dc=2:0 2.03 2.04 0.93 1:63b 1:64b 0:71b 0.67 0.69 1.02 0:36b 0:38b 4.0
P=dc=2:5 E-4 E-3b
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